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ABSTRACT 

Malaria diagnosis based on microscopic examination of blood smears is 
time-consuming and highly dependent on skilled laboratory personnel, 
which limits its scalability in resource-constrained environments. This 
study investigated whether an explainable deep learning approach could 
provide reliable and interpretable malaria blood cell classification using a 
convolutional neural network based on the DenseNet121 architecture 
combined with Gradient-weighted Class Activation Mapping to visualize 
image regions influencing model predictions. Five-fold cross-validation 
was applied to ensure stable and unbiased performance evaluation. The 
proposed model achieved a mean classification accuracy of 0.8285 with 
a standard deviation of 0.0052, demonstrating consistent generalization 
across folds, while precision, recall, and F1-score values remained 
balanced between parasitized and uninfected classes. Grad-CAM 
visualizations applied to representative samples consistently highlighted 
intracellular regions associated with parasite presence in infected cells 
and more uniform cytoplasmic regions in uninfected samples, providing 
qualitative evidence that the model learned biologically meaningful 

features. These results indicate that DenseNet121 offers a stable and interpretable solution for malaria 
blood cell classification when supported by visual explanation, enabling transparent automated 
screening suitable for smart healthcare and medical informatics applications. 

 
1. INTRODUCTION 

Malaria remains one of the most persistent and damaging infectious diseases 
worldwide. In many regions, particularly in low and middle-income countries, it continues to 
place a heavy burden on public health systems, local economies and vulnerable populations 
(Anikeeva et al., 2024). Despite decades of scientific progress, the disease is still responsible 
for hundreds of millions of infections each year, and early diagnosis remains one of the most 
effective strategies for reducing its transmission and mortality. However, diagnostic practices 
have not evolved at the same pace as treatment (Yalley et al., 2024). 

Microscopic examination of stained blood smears remains the clinical gold standard for 
malaria detection. However, this approach is slow, labor-intensive, and highly dependent on 
the expertise of trained laboratory personnel (Davidson et al., 2021). Even minor variations in 
staining quality, illumination, or sample preparation can significantly degrade diagnostic 
accuracy, a problem that is especially severe in rural and resource-limited settings where 
laboratory conditions are rarely optimal. These constraints have motivated the increasing use 
of artificial intelligence in automated blood smear analyses. Over the last decade, deep 
learning, particularly convolutional neural networks (CNNs), has transformed image analysis 
by learning complex visual representations directly from raw pixel data and achieving state-of-
the-art performance across a wide range of medical imaging tasks, from tumor detection to 
retinal disease screening (Ramos-Briceño et al., 2025). Consequently, CNN-based malaria 
blood smear classification has emerged as a widely studied and highly effective approach, with 
numerous reports demonstrating strong performance in distinguishing parasitized from 
uninfected blood cells (Quan et al., 2020). 

ARTICLE INFO  

Article history: 
Initial submission 
16-01-2026 
Received in revised form 
20-01-2026 
Accepted 27-01-2026 
Available online 27-02-2026 
 
Keywords: 
Malaria Detection, Deep 
Learning, Explainable 
Artificial Intelligence, 
Medical Image Analysis 
 
DOI: 
https://doi.org/10.59356/s
mart-techno.v8i1.199  

mailto:octavian@unhas.ac.id
https://doi.org/10.59356/smart-techno.v8i1.199
https://doi.org/10.59356/smart-techno.v8i1.199


Octavian1*, Imelda Widjaja2, Supri Amir3 (2026).  Smart Techno. Vol. 08(1) PP. 151-160 
 

 
 

E-ISSN : 2541-0679  152 

Despite these advances, high classification accuracy alone is not sufficient for reliable 
clinical use, particularly when using convolutional neural networks, such as DenseNet121, 
which operate as complex black-box models (Laschowski et al., 2022). These networks can 
produce highly confident predictions without revealing how or why those decisions were made, 
which represents a critical limitation in medical contexts, where clinicians must understand the 
basis of a diagnosis before trusting or acting on it. This lack of transparency has driven the 
rapid development of explainable artificial intelligence (XAI), which aims to make the behavior 
of deep learning models interpretable by human users. Among XAI techniques, Gradient-
weighted Class Activation Mapping (Grad-CAM) has become one of the most widely adopted 
methods for convolutional neural networks, including DenseNet architectures, by generating 
heatmaps that indicate which regions of an image contribute most strongly to a model’s 
prediction (Ennab & Mcheick, 2025). In malaria microscopy, these visualizations can reveal 
whether a DenseNet-based model focuses on parasite bodies within red blood cells or 
responds to irrelevant background features. 

This study addresses this need by systematically evaluating a DenseNet121-based 
malaria classification model with Grad-CAM-based visual explanations. Rather than proposing 
a new architecture, the focus is on rigorously measuring the classification performance and 
analyzing what the model actually learns to see in blood smear images. By integrating cross-
validated DenseNet121 classification with Grad-CAM visualization, this study aims to provide 
a transparent and reproducible assessment of how deep learning models interpret malaria 
microscopy, contributing to the development of more trustworthy and clinically meaningful AI-
based diagnostic systems. 
 

2. LITERATURE REVIEW 

Deep learning has become the dominant approach for automated malaria diagnosis 
from blood smear images, largely because of the success of convolutional neural networks 
(CNNs) in medical image analysis (Sriporn et al., 2020). A wide range of architectures, 
including VGG, ResNet, Inception, and DenseNet, have been applied for malaria classification 
(Alraba’nah & Toghuj, 2024; Loddo et al., 2022; Nakasi et al., 2020). 

Although the strong performance of modern convolutional neural networks 
demonstrates their effectiveness for malaria image classification, recent research has 
increasingly emphasized that high accuracy alone is insufficient for reliable medical 
deployment because deep learning models are typically opaque, making it difficult to determine 
whether predictions are driven by clinically meaningful structures or spurious visual 
correlations (Ibrahim & Shafiq, 2023). This has motivated the adoption of explainable artificial 
intelligence (XAI) techniques, such as Gradient-weighted Class Activation Mapping (Grad-
CAM), which provides visual explanations by highlighting the image regions that most strongly 
influence a model’s output (M et al., 2024). In malaria microscopy, these visualizations can 
indicate whether the CNNs attend to the parasite regions within red blood cells, thereby offering 
an intuitive insight into the model behavior. In most existing studies (Rahman et al., 2024; Xiao 
et al., 2021; Zhang & Ogasawara, 2023), Grad-CAM has primarily been used as a qualitative 
tool to support model interpretation rather than as a fully quantitative evaluation of attention 
consistency, and this practice remains common in applied medical imaging research. 

Motivated by this perspective, the present study employed DenseNet121 as a balanced 
and computationally efficient convolutional neural network architecture that offers an effective 
trade-off between model depth, learning stability, and interpretability, rather than maximizing 
classification accuracy through deeper variants such as DenseNet169 or DenseNet201 
(Lakshmi & Sargunam, 2024). DenseNet121 was selected as a representative baseline model 
that is widely used in medical image analysis and suitable for visual explanation, as its 
moderate depth facilitates clearer and more interpretable activation patterns when applying 
Grad-CAM. Accordingly, this study did not aim to establish new state-of-the-art performance 
in terms of accuracy; instead, Grad-CAM was applied to representative examples to illustrate 
how the model formed its predictions and to verify that decision-making was based on 
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biologically plausible image regions. This approach supports the objective of developing a 
transparent and practically useful malaria classification system for smart healthcare and 
medical informatics applications. 

 

3. METHOD 

3.1 Research Workflow 
To provide a clear overview of the proposed approach, this subsection describes the 

end-to-end workflow of the explainable malaria classification system. The workflow was 
designed to integrate data processing, model training, performance evaluation, and visual 
explanation into a single coherent pipeline, ensuring both predictive reliability and 
interpretability. 

 

Figure 1. Overall research workflow of the proposed system 

Figure 1 illustrates the overall workflow of the proposed explainable malaria 
classification system, beginning with data acquisition and ending with visual interpretation of 
model predictions. The process starts with the collection of microscopic blood smear images, 
which are subsequently preprocessed through resizing and normalization to ensure 
compatibility with the DenseNet121 input requirements. The preprocessed images are then 
used to train and evaluate the DenseNet121 model using a five-fold cross-validation strategy, 
allowing stable and unbiased performance assessment across different data partitions. 
Following classification, Gradient-weighted Class Activation Mapping is applied to 
representative test images to generate visual heatmaps that highlight the image regions 
contributing most strongly to each prediction. This workflow integrates quantitative 
performance evaluation with qualitative visual explanation, providing a transparent and 
interpretable framework for automated malaria blood cell classification within smart healthcare 
and medical informatics applications. 

3.2 Data Source and Collection 
The dataset used in this study was obtained from a publicly available malaria 

microscopy repository containing segmented images of red blood cells labeled as either 
parasitized or uninfected (Rajaraman et al., 2019). The dataset consisted of thousands of high-
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resolution blood smear images captured under controlled laboratory conditions, with each 
image representing a single cell extracted from a thin blood smear slide. The use of a 
standardized and openly accessible dataset enabled reproducibility and facilitated direct 
comparison with previous studies that evaluated deep learning models for malaria diagnosis. 

 
Figure 2. Images of Parasitized and Uninfected Blood Cell 

The images were organized into two classes corresponding to infected and healthy 
cells, and a sample image is shown in Figure 2. The dataset consisted of 27,560 segmented 
blood cell images, with 13,780 images for each class (parasitized and uninfected), ensuring 
perfect class balance. A five-fold cross-validation strategy was employed to evaluate model 
performance. In each fold, the dataset was first divided into training and testing subsets using 
an 80:20 ratio at the class level. The training subset was then further split into training and 
validation sets using an additional 80:20 ratio. This resulted in 8,818 images used for training, 
2,205 images for validation, and 2,756 images for testing per class in each fold. TABLE 1 

provides the detail of dataset distribution in this research 

Table 1. Dataset Distribution per Fold 

Subset Parasitized Uninfected Total Images 

Training 8,818 8,818 17,636 

Validation 2,205 2,205 4,410 

Testing 2,756 2,756 5,512 

Total 13,780 13,780 27,560 

To ensure consistency in training and evaluation, all images were sorted and indexed 
deterministically before model construction. Each image was resized to a fixed resolution of 
224 × 224 pixels and normalized to the range [0, 1] to satisfy the input requirements of the 
DenseNet121 architecture. No manual feature extraction was applied because the 
convolutional neural network was designed to learn relevant visual features directly from the 
pixel data. 

3.3 Model Architecture 
The proposed model is based on DenseNet121, a deep convolutional neural network 

characterized by dense connectivity between layers, where each layer receives the feature 
maps of all preceding layers as input. This design encourages feature reuse and improves 
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gradient flow, making DenseNet particularly suitable for learning fine-grained textures and 
structural patterns in microscopic images. The DenseNet121 backbone was initialized with 
pre-trained weights from ImageNet and then adapted to the malaria classification task by 
attaching a global average pooling layer, followed by a sigmoid-activated dense layer for binary 
classification. The details of Architecture model can be seen in Figure 3. 

  

Figure 3. DenseNet121 Architecture  

The final network output the probability that a given blood cell image belongs to the 
parasitized class. A decision threshold of 0.5 was used to assign the class labels during the 
evaluation. DenseNet121 was selected to balance model complexity and computational 
efficiency, allowing the investigation of explainability without excessive parameterization of 
deeper architectures. 

3.4 Training and Validation Strategy  
The model was trained for 15 epochs based on convergence behavior observed during 

training. The learning curves indicated that both training and validation accuracy stabilized 
before the final epoch, and extending training further did not result in meaningful performance 
improvements while increasing the risk of overfitting. Therefore, 15 epochs were selected as 
a reasonable trade-off between convergence and generalization.  

K-fold cross-validation was employed to obtain a reliable estimate of the model 
performance. The full dataset was divided into k disjoint subsets, and in each fold, one subset 
was used for testing, while the remaining subsets were used for training. This procedure was 
repeated until each sample was used once for evaluation. Cross-validation reduces the risk of 
biased performance estimates and allows for the assessment of model stability across different 
data partitions (Ma et al., 2018). During training, the images were fed into the network in mini-
batches, and the model parameters were optimized using a gradient-based optimizer to 
minimize the binary cross-entropy loss. At each fold, the trained model was saved and later 
used for both quantitative evaluation and explainability analyses.  

 
3.5 Explainable AI Using Grad-CAM 

The predictions of the DenseNet121 model were interpreted using Gradient-weighted 
Class Activation Mapping (Grad-CAM), which was applied to the final convolutional layer of 
the network. Grad-CAM computes the gradient of the predicted class score with respect to the 
feature maps of the selected convolutional layer, producing a spatial heatmap, example in  
Figure 4, that highlights the regions of the image that most strongly influence the model’s 
decision-making.  
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Figure 4. Example of Grad-CAM heatmap (Selvaraju et al., 2017) 

Grad-CAM heatmaps were generated for both the parasitized and uninfected classes 
for each correctly classified test image. For the sigmoid-based binary classifier, the heatmap 
for the uninfected class was computed by inverting the predicted probabilities. The resulting 
heatmaps were resized to match the input image resolution and overlaid on the original blood 
cell images using a color map, allowing for visual inspection of whether the network focused 
on parasite structures or irrelevant background regions. 

4. RESULT AND DISCUSSION 

The DenseNet121 model demonstrated a stable learning behavior across all five 
validation folds. The training and validation curves in Figure 5 and Figure 6 showed a smooth 
increase in accuracy and a consistent decrease in loss, with close alignment between the two, 
indicating that the network learned generalizable features rather than overfitting to the training 
data. This stability is particularly important for medical imaging tasks, in which models must 
perform reliably on unseen data. 

Using five-fold cross-validation, the model achieved a mean classification accuracy of 
0.8285, with a standard deviation of 0.0052, indicating consistent performance across different 
data splits. The individual fold accuracies ranged from 0.8224 to 0.8351, demonstrating that 
the learned feature representations were stable and not overly dependent on specific training 
subsets. The results in Table 2 suggest that DenseNet121 offers a dependable and 
reproducible baseline for malaria classification, balancing effectiveness with computational 
efficiency. 

 
Figure 5. Plot of Training and Validation Accuracy for each Epoch 
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Figure 6. Plot of Training and Validation Loss for each Epoch 

Table 2. Accuracy Model for Each Fold 

No Fold Accuracy 

1 Fold 1 0.8351 
2 Fold 2 0.8258 
3 Fold 3 0.8224 
4 Fold 4 0.8247 
5 Fold 5 0.8343 
6 Mean ± Std 0.8285 ± 0.0052 

Table 3. Precision, Recall, and F1-Score of Model for each Fold 

Fold Class Precision Recall F1-score 

Fold 1 
Parasitized 0.85 0.82 0.84 
Uninfected 0.82 0.85 0.84 

Fold 2 
Parasitized 0.83 0.82 0.82 
Uninfected 0.82 0.83 0.83 

Fold 3 
Parasitized 0.84 0.80 0.82 
Uninfected 0.81 0.85 0.83 

Fold 4 
Parasitized 0.84 0.81 0.82 
Uninfected 0.81 0.84 0.83 

Fold 5 
Parasitized 0.84 0.83 0.83 
Uninfected 0.83 0.84 0.84 

 
The performance demonstrated a well-balanced effectiveness between the parasitized 

and uninfected classes, which is essential for reliable malaria detection. Throughout all folds 
in the cross-validation process, the macro-averaged F1-scores consistently ranged from 0.82 
to 0.84, indicating stable and robust classification capability. Moreover, the precision and recall 
values for both classes were closely aligned, reflecting that the model maintained comparable 
sensitivity and specificity without favoring one class over the other. This equilibrium is 
particularly important in the clinical context of malaria screening, where minimizing both false 
negatives, missed infections, and false positives, incorrect diagnoses, is critical to patient 
outcomes and resource allocation. The absence of systematic bias toward either parasitized 
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or uninfected samples further reinforces the model’s potential for practical deployment in 
diagnostic-support systems, ensuring equitable performance across diverse cases. These 
findings underscore the model’s suitability as a dependable tool that can assist healthcare 
professionals by providing consistent and clinically meaningful predictions. The details score 
can be seen in Table 3. 

Confusion matrices, Figure 7, further illustrate this balanced behavior. In Fold 1, for 
example, 2298 parasitized and 2297 uninfected cells were correctly classified, with 
misclassifications distributed relatively evenly. Similar patterns were observed across all folds, 
reinforcing the conclusion that the classifier maintains consistent decision boundaries between 
infected and healthy cells. 

 

 

Figure 7. Confusion Matrices Across All Folds 

Beyond numerical performance, Grad-CAM visualization provides insight into what the 
model learns. The heatmaps consistently highlight intracellular regions associated with 
parasite presence in infected cells, while focusing on more uniform cytoplasmic regions in 
uninfected samples. These visual patterns align with biological understanding of malaria 
morphology and indicate that the DenseNet121 model bases its predictions on diagnostically 
relevant features rather than on background artifacts or staining irregularities. 

 
Figure 8. Representative Grad-CAM overlays for parasitized and uninfected cells 

Grad-CAM visualizations provide qualitative insights into how the DenseNet121 model 
predicts parasitized and uninfected blood cell images. For parasitized samples, the Grad-CAM 
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heatmaps consistently highlighted localized intracellular regions that corresponded to the 
presence of parasite structures. As shown in Figure 8(a), high-activation areas (indicated by 
warmer colors) are concentrated around the purple-stained parasite bodies within the red 
blood cells. This suggests that the model relies on specific morphological cues associated with 
infection rather than diffuse background information when predicting the parasitized class of 
an organism. 

In contrast, the Grad-CAM results for the uninfected samples exhibited different 
activation patterns. As illustrated in Figure 8(b), the heatmaps were more broadly distributed 
across the cytoplasmic region of the cell, with no strong localized focus on specific intracellular 
structures. This behavior reflects the absence of parasite morphology and indicates that the 
model captures the overall uniform texture and appearance of healthy blood cells when 
predicting an uninfected class. The contrast between these two patterns demonstrates that the 
model differentiates between infected and uninfected cells not only through numerical 
classification scores but also through distinct visual attention strategies. For parasitized cells, 
attention is concentrated and localized, whereas for uninfected cells, attention is more diffuse 
and evenly spread. Although Grad-CAM was applied to representative examples rather than 
exhaustively across the dataset, the observed visualizations provide intuitive evidence that the 
model predictions are grounded in biologically plausible image regions. 

Overall, these Grad-CAM results support the interpretability of the DenseNet121 model 
by demonstrating that its decisions are influenced by meaningful cellular features. This 
qualitative explainability strengthens confidence in the model’s behavior and highlights the 
value of integrating visual interpretation into deep learning-based malaria diagnosis systems, 
particularly in smart healthcare and medical informatics applications. 

 

5. CONCLUSION 

This study examined whether an explainable deep learning approach based on 
DenseNet121 and Grad-CAM could provide reliable and interpretable malaria blood cell 
classification. The experimental results demonstrated that the proposed model achieved a 
mean classification accuracy of 0.8285 with a standard deviation of 0.0052 across five-fold 
cross-validation, indicating stable and consistent generalization performance. In addition to 
numerical performance, Grad-CAM visualizations applied to representative samples showed 
that the model focused on intracellular regions associated with parasite presence in infected 
cells and more uniform cytoplasmic regions in uninfected cells, providing qualitative evidence 
that the network learned biologically meaningful features. These findings confirm that a 
moderately deep convolutional neural network, when combined with visual explanation, can 
deliver transparent and clinically meaningful predictions without relying on the most complex 
architectures. Based on these results, developers of smart healthcare and medical informatics 
systems are encouraged to emphasize interpretability and stability alongside accuracy, while 
healthcare practitioners and system designers may use explainable models such as 
DenseNet121 with Grad-CAM to support trustworthy and practical malaria screening solutions, 
particularly in resource-limited and telemedicine-based settings. 
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