Clustering of Regencies and Municipalities Based on the Number of Livestock in East Java Province Using the Fuzzy C-Means Method
Abstract
This study was conducted to cluster regencies and municipalities in East Java Province based on the population of livestock, aiming to identify regional distribution patterns according to livestock characteristics. The clustering was performed using the Fuzzy C-Means algorithm and validated through the Partition Coefficient Index method. The implementation was carried out in a web-based application using the Laravel framework. The stages of this research included data collection, normalization, Fuzzy C-Means computation, evaluation using the Partition Coefficient Index, and profiling of cluster characteristics. The results of the study, tested with cluster numbers ranging from 2 to 10, indicated that the optimal number of clusters was two for both 2021 and 2022, with Partition Coefficient Index values of 0.7507 for 2021 and 0.7486 for 2022. In 2021, the optimal clustering produced Cluster 1
consisting of 7 regencies and 9 cities, and Cluster 2 consisting of 22 regencies. In 2022, the optimal clustering resulted in Cluster 1 consisting of 21 regencies, and Cluster 2 consisting of 8 regencies and 9 cities.
Downloads
References
Al-abdaliah, U., Sujaini, H., & Muhardi, H. (2020). Pengklasteran Dosen Berdasarkan Evaluasi Mahasiswa Menggunakan Metode Fuzzy C-Means Lecturer Clustering Based on Student Evaluation Using Fuzzy C-Means. 08(4), 403–408. https://doi.org/10.26418/justin.v8i4.40094
Alfian, W., & Hidayat, T. (2024). Analisis Clustering Pegawai Berdasarkan Tingkat Kedisiplinan Menggunakan Algoritma K-Means dan Davies-Bouldin Index. Journal of Electrical Engineering and Computer, 6(2), 437–448. https://doi.org/10.33650/jeecom.v4i2
Edi, D. N. (2020). Analisis Potensi Wilayah untuk Pengembangan Komoditas Ternak Ruminanisa di Provinsi Jawa Timur. Briliant: Jurnal Riset Dan Konseptual, 5(3), 562. https://doi.org/10.28926/briliant.v5i3.473
Fadila, P., Stmik, S., & Binjai, K. (2021). Pengelompokan Populasi Hewan Ternak Menggunakan Metode Clustering (Studi Kasus : Dinas Pertanian dan Ketahanan Pangan Kabupaten Langkat).
Firmansyah, I., Fauziah, S., Ibrahim, N. H., & Fauzi, F. (2023). Clustering Untuk Menetukan Indeks Kesejahtraan Rakyat Di Provinsi Jawa Tengah 2022 Menggunakan Metode Fuzzy C-Means. 1(2), 81–91.
Maiyena, S., & Mawarnis, E. R. (2022). Kajian Analisis Konsumsi Daging Sapi dan Daging Babi Ditinjau dari Kesehatan. 6, 3131–3136.
Permanan, I. (2022). The Effect of Data Normalization on the Performance of the Classification Results of the Backpropagation Algorithm Pengaruh Normalisasi Data Terhadap Performa Hasil Klasifikasi Algoritma Backpropagation. Journal of Informatic Research and Software Engineering, 2(1), 67–72.
Rahakbauw, D. L., Ilwaru, V. Y. I., & Hahury, M. H. (2017). Implementation of fuzzy c-means clustering in scholarship determination. Jurnal Ilmu Matematika Dan Terapan, 11(1), 1–12.
Trisman, I., Firman, A., & Herlina, L. (2022). Penentuan Wilayah Pengembangan Ternak Ruminansia Besar Di Provinsi Jawa Timur. Jurnal Ilmu Ternak Universitas Padjadjaran, 22(2), 125. https://doi.org/10.24198/jit.v22i2.41717
Widianti, A., & Yuniseffendri. (2024). Toponimi Nama Kabupaten dan Kota di Jawa Timur. BAPALA, 11(3), 305–317.
Zahro, I. H., Rosyidah, U. A., & Handayani, L. (2024). Implementasi Algoritma Fuzzy C-Means untuk Pengelompokkan Provinsi di Indonesia Berdasarkan Kualitas Perguruan Tinggi. BIOS : Jurnal Teknologi Informasi Dan Rekayasa Komputer, 5(1), 80–86. https://doi.org/10.37148/bios.v5i1.102
Copyright (c) 2025 Intan Agnesa Salsabilla

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with the Smart Techno agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)

