Clustering of Planted Area, Harvested Area, and Rice Production in Each Village of Jember Regency Using K-Means Clustering and the Davies Bouldin Index
Abstract
Rice (Oryza sativa L.) is a cultivated crop that serves as the primary staple food for the majority of Indonesia’s population. East Java Province is one of the regions with the highest rice production in the country. Therefore, increasing rice production is essential to meet national food demands. This study aims to classify villages in Jember Regency based on the variables of planted area, harvested area, and rice production, using data obtained from the official publications of the Jember Regency Central Bureau of Statistics for 2022 and 2023, covering a total of 248 villages. The data were processed using the K-Means Clustering algorithm, followed by determining the optimal number of clusters using the Davies Bouldin Index. The clustering results were visualized in an interactive web-based map through a Geographic Information System. Based on testing cluster counts from 2 to 10, the optimal number of clusters was found to be three, with a Davies Bouldin Index value of 0.605. This study is expected to provide benefits for the Jember Regency Central Bureau of Statistics, the community, and farmers in storing, managing, and disseminating information regarding rice crops in Jember Regency.
Downloads
References
Amalina, T., Pramana, D. B. A., & Sari, B. N. (2024). Metode K-Means Clustering Dalam Pengelompokan Penjualan Produk Frozen Food. Jurnal Ilmu Komputer dan Sistem Informasi, 3(1), 1–10. https://doi.org/10.70340/jirsi.v3i1.88
Amna, S, W., Sudipa, I. G. I., Putra, T. A. E., Wahidin, A. J., Syukrilla, W. A., Wardhani, A. K., Heryana, N., Indriyani, T., & Santoso, L. W. (2023). Data Mining. In PT GLOBAL EKSEKUTIF TEKNOLOGI. https://www.cambridge.org/core/product/identifier/CBO9781139058452A007/type/book_part
Ananda, D., Rohimah, S., Susilo, B., Wulan, D., & Mustofa, A. (2022). Implementasi K-Means Dalam Pengelompokkan Data Akta Kelahiran di Indonesia: Implementation of K-Means in Grouping Birth Certificate Data in Indonesia. SENTIMAS: Seminar Nasional Penelitian dan Pengabdian Masyarakat, 66–71. https://journal.irpi.or.id/index.php/sentimas/article/view/247%0Ahttps://journal.irpi.or.id/index.php/sentimas/article/download/247/135
BPS Kabupaten Jember. (2023). Luas Panen dan Produksi Padi di Indonesia 2023 (Angka Tetap). Berita Resmi Statistik. https://www.bps.go.id/pressrelease/2023/10/16/2037
Chaundhry, M., Shafi, I., Mahnoor, Vargas, D. L. R., Thompson, E. B., & Ashraf, I. (2023). A Systematic Literature Review on Identifying Patterns Using Unsupervised Clustering Algorithms: A Data Mining Perspective. Symmetry, 15(9). https://doi.org/10.3390/sym15091679
Fahada, A. (2024). Pemanfaatan WEB GIS Untuk Pemetaan Dan Klasterisasi Jenis Hasil Perikanan Tangkap Menggunakan Metode K-Means Clustering. In Doctoral dissertation, Universitas Malikussaleh. https://rama.unimal.ac.id/id/eprint/591/%0Ahttps://rama.unimal.ac.id/id/eprint/591/5/AMALIA FAHADA_190170178_Pemanfaatan WEB GIS Untuk Pemetaan Dan Klasterisasi Jenis Hasil Perikanan Tangkap Menggunakan Metode K-Means Clustering.pdf
Fauzi, I. F., Gito Resmi, M., & Hermanto, T. I. (2023). Penentuan Jumlah Cluster Optimal Menggunakan Davies Bouldin Index pada Algoritma K-Means untuk Menentukan Kelompok Penyakit. 7(2), 2598–8069.
Handayani, F. (2022). Aplikasi Data Mining Menggunakan Algoritma K-Means Clustering untuk Mengelompokan Mahasiswa Berdasarkan Gaya Belajar. Jurnal Teknologi dan Informasi, 12(1), 46–63. https://doi.org/10.34010/jati.v12i1.6733
Hua, A. K. (2015). Sistem Informasi Geografi ( GIS ): Pengenalan kepada perspektif komputer Geographic Information System ( GIS ): Introduction to the computer perspective. 1(1), 24–31.
Prasetya, Y. Y., Faisol, A., & Vendyansah, N. (2021). Sistem Informasi Geografis Hasil Produksi Padi Di Kabupaten Malang Menggunakan Metode K-Means Clustering. JATI (Jurnal Mahasiswa Teknik Informatika), 5(2), 806–814. https://doi.org/10.36040/jati.v5i2.3788
Putri, T. (2022). SISTEM INFORMASI GEOGRAFIS PEMETAAN REKLAME DI KOTA MEDAN BERBASIS WEB.
Putri, W., & Afdal, M. (2023). Penerapan Algoritma K-Means Untuk Pengelompokan Data Penyandang Disabilitas Di Kabupaten Rokan Hilir. Indonesian Journal of Informatic Research and Software Engineering (IJIRSE), 3(1), 30–38. https://doi.org/10.57152/ijirse.v3i1.526
Wahidah, N., Juwita, O., & Arifin, F. N. (2023). Pengelompokkan Daerah Rawan Bencana di Kabupaten Jember Menggunakan Metode K-Means Clustering. INFORMAL: Informatics Journal, 8(1), 22. https://doi.org/10.19184/isj.v8i1.29542
Wijayanto, S., & Yoka Fathoni, M. (2021). Pengelompokkan Produktivitas Tanaman Padi di Jawa Tengah Menggunakan Metode Clustering K-Means. Jupiter, 13(2), 212–219.
Copyright (c) 2025 Hestina Restu Astika

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with the Smart Techno agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)

