Clustering of Planted Area, Harvested Area, and Rice Production in Each Village of Jember Regency Using K-Means Clustering and the Davies Bouldin Index

  • Hestina Restu Astika Universitas Muhammadiyah Jember
Keywords: K-Means Clustering, Davies Bouldin Index, Rice Production, Geographic Information System

Abstract

Rice (Oryza sativa L.) is a cultivated crop that serves as the primary staple food for the majority of Indonesia’s population. East Java Province is one of the regions with the highest rice production in the country. Therefore, increasing rice production is essential to meet national food demands. This study aims to classify villages in Jember Regency based on the variables of planted area, harvested area, and rice production, using data obtained from the official publications of the Jember Regency Central Bureau of Statistics for 2022 and 2023, covering a total of 248 villages. The data were processed using the K-Means Clustering algorithm, followed by determining the optimal number of clusters using the Davies Bouldin Index. The clustering results were visualized in an interactive web-based map through a Geographic Information System. Based on testing cluster counts from 2 to 10, the optimal number of clusters was found to be three, with a Davies Bouldin Index value of 0.605. This study is expected to provide benefits for the Jember Regency Central Bureau of Statistics, the community, and farmers in storing, managing, and disseminating information regarding rice crops in Jember Regency.

Downloads

Download data is not yet available.

References

Amalina, T., Pramana, D. B. A., & Sari, B. N. (2024). Metode K-Means Clustering Dalam Pengelompokan Penjualan Produk Frozen Food. Jurnal Ilmu Komputer dan Sistem Informasi, 3(1), 1–10. https://doi.org/10.70340/jirsi.v3i1.88

Amna, S, W., Sudipa, I. G. I., Putra, T. A. E., Wahidin, A. J., Syukrilla, W. A., Wardhani, A. K., Heryana, N., Indriyani, T., & Santoso, L. W. (2023). Data Mining. In PT GLOBAL EKSEKUTIF TEKNOLOGI. https://www.cambridge.org/core/product/identifier/CBO9781139058452A007/type/book_part

Ananda, D., Rohimah, S., Susilo, B., Wulan, D., & Mustofa, A. (2022). Implementasi K-Means Dalam Pengelompokkan Data Akta Kelahiran di Indonesia: Implementation of K-Means in Grouping Birth Certificate Data in Indonesia. SENTIMAS: Seminar Nasional Penelitian dan Pengabdian Masyarakat, 66–71. https://journal.irpi.or.id/index.php/sentimas/article/view/247%0Ahttps://journal.irpi.or.id/index.php/sentimas/article/download/247/135

BPS Kabupaten Jember. (2023). Luas Panen dan Produksi Padi di Indonesia 2023 (Angka Tetap). Berita Resmi Statistik. https://www.bps.go.id/pressrelease/2023/10/16/2037

Chaundhry, M., Shafi, I., Mahnoor, Vargas, D. L. R., Thompson, E. B., & Ashraf, I. (2023). A Systematic Literature Review on Identifying Patterns Using Unsupervised Clustering Algorithms: A Data Mining Perspective. Symmetry, 15(9). https://doi.org/10.3390/sym15091679

Fahada, A. (2024). Pemanfaatan WEB GIS Untuk Pemetaan Dan Klasterisasi Jenis Hasil Perikanan Tangkap Menggunakan Metode K-Means Clustering. In Doctoral dissertation, Universitas Malikussaleh. https://rama.unimal.ac.id/id/eprint/591/%0Ahttps://rama.unimal.ac.id/id/eprint/591/5/AMALIA FAHADA_190170178_Pemanfaatan WEB GIS Untuk Pemetaan Dan Klasterisasi Jenis Hasil Perikanan Tangkap Menggunakan Metode K-Means Clustering.pdf

Fauzi, I. F., Gito Resmi, M., & Hermanto, T. I. (2023). Penentuan Jumlah Cluster Optimal Menggunakan Davies Bouldin Index pada Algoritma K-Means untuk Menentukan Kelompok Penyakit. 7(2), 2598–8069.

Handayani, F. (2022). Aplikasi Data Mining Menggunakan Algoritma K-Means Clustering untuk Mengelompokan Mahasiswa Berdasarkan Gaya Belajar. Jurnal Teknologi dan Informasi, 12(1), 46–63. https://doi.org/10.34010/jati.v12i1.6733

Hua, A. K. (2015). Sistem Informasi Geografi ( GIS ): Pengenalan kepada perspektif komputer Geographic Information System ( GIS ): Introduction to the computer perspective. 1(1), 24–31.

Prasetya, Y. Y., Faisol, A., & Vendyansah, N. (2021). Sistem Informasi Geografis Hasil Produksi Padi Di Kabupaten Malang Menggunakan Metode K-Means Clustering. JATI (Jurnal Mahasiswa Teknik Informatika), 5(2), 806–814. https://doi.org/10.36040/jati.v5i2.3788

Putri, T. (2022). SISTEM INFORMASI GEOGRAFIS PEMETAAN REKLAME DI KOTA MEDAN BERBASIS WEB.

Putri, W., & Afdal, M. (2023). Penerapan Algoritma K-Means Untuk Pengelompokan Data Penyandang Disabilitas Di Kabupaten Rokan Hilir. Indonesian Journal of Informatic Research and Software Engineering (IJIRSE), 3(1), 30–38. https://doi.org/10.57152/ijirse.v3i1.526

Wahidah, N., Juwita, O., & Arifin, F. N. (2023). Pengelompokkan Daerah Rawan Bencana di Kabupaten Jember Menggunakan Metode K-Means Clustering. INFORMAL: Informatics Journal, 8(1), 22. https://doi.org/10.19184/isj.v8i1.29542

Wijayanto, S., & Yoka Fathoni, M. (2021). Pengelompokkan Produktivitas Tanaman Padi di Jawa Tengah Menggunakan Metode Clustering K-Means. Jupiter, 13(2), 212–219.

Published
2025-12-10
How to Cite
Astika, H. R. (2025). Clustering of Planted Area, Harvested Area, and Rice Production in Each Village of Jember Regency Using K-Means Clustering and the Davies Bouldin Index. Smart Techno (Smart Technology, Informatics and Technopreneurship), 24-38. Retrieved from https://lppm.primakara.ac.id/jurnal/index.php/smart-techno/article/view/160
Section
Articles