Sentiment Analysis of Gojek Application User Reviews Using the Long Short-Term Memory (LSTM) Algorithm

  • Ahmad Firdaussani Universitas Muhammadiyah Jember
  • Hardian Oktavianto Universitas Muhammadiyah Jember
  • Wiwik Suharso Universitas Muhammadiyah Jember
Keywords: Online Transportation, Long Short-Term Memory, Sentiment Analysis

Abstract

This study was conducted to perform sentiment analysis by identifying patterns or trends in user reviews of the Gojek application using the Long Short-Term Memory (LSTM) algorithm, which was implemented in the form of a simple web-based application or dashboard. In today’s digital era, technological advancements have significantly influenced various aspects of life, particularly the mobile-based transportation service industry. One of the most widely used online transportation services in Indonesia is Gojek. It is essential for Gojek to listen to customer reviews; therefore, sentiment analysis is required to identify patterns or trends within user feedback so the application can better respond to user needs. This research utilizes the Long Short-Term Memory (LSTM) algorithm, a variant of the Recurrent Neural Network (RNN) that incorporates a cell state and gating mechanisms (input, forget, and output gates) to regulate the flow of information. This structure enables LSTM to retain relevant information while discarding irrelevant data, allowing it to capture both short-term and long-term patterns in text reviews. The model was used to analyze sentiment within a dataset collected from 2021 to 2024. The experimental results show that LSTM achieved an optimal accuracy of 78% using a 70:30 dataset split, providing balanced performance across both majority and minority classes, with a significant improvement in the f1-score for each class (0: 0.73; 1: 0.75; 2: 0.85) after applying the SMOTE technique to address class imbalance. Without SMOTE, the highest accuracy reached 83% with the same split (70:30); however, the neutral class could not be detected (f1-score = 0). With SMOTE, although accuracy slightly decreased, the overall performance became more balanced as the neutral class could be properly recognized.

Downloads

Download data is not yet available.

References

Al-Areef, M. H., & Saputra, K. S. (2023). Analisis Sentimen Pengguna Twitter Mengenai Calon Presiden Indonesia Tahun 2024 Menggunakan Algoritma LSTM. Saintikom (Sains Manajemen Informatika Dan Komputer), 22(2), 270–279. https://ojs.trigunadharma.ac.id/index.php/jis/index

Alghifari, D. R., Edi, M., & Firmansyah, L. (2022). Implementasi Bidirectional LSTM untuk Analisis Sentimen Terhadap Layanan Grab Indonesia. JAMIKA (Jurnal Manajemen Informatika), 12(2), 89–99. https://doi.org/10.34010/jamika.v12i2.7764

Wijaya, A. D. S., Juliharta, I. G. P. K., & Astawa, N. L. P. N. S. P. (2023). Analisis pengaruh e-commerce terhadap penjualan item di Koi-Ku Shop. Smart Techno (Smart Technology, Informatics and Technopreneurship), 5(1), 8–12.

Fadli, H. F., & Hidayatullah, A. F. (2021). Identifikasi Cyberbullying pada Media Sosial Twitter Menggunakan Metode LSTM dan BiLSTM. Automata, 2(1), 1–6. Gunawan, A. R., Faticha, R., & Aziza, A. (2025). Sentiment Analysis Using LSTM Algorithm Regarding Grab Application Services in Indonesia. Journal of Applied Informatics and Computing (JAIC), 9(2), 322. http://jurnal.polibatam.ac.id/index.php/JAIC

Hidayat, E. Y., Hardiansyah, R. W., & Affandy, A. (2021). Analisis Sentimen Twitter untuk Menilai Opini Terhadap Perusahaan Publik Menggunakan Algoritma Deep Neural Network. Nasional Teknologi Dan Sistem Informasi, 7(2), 108–118. https://doi.org/10.25077/teknosi.v7i2.2021.108-118

Indrawati, K. D., & Februatiyanti, H. (2023). Analisis Sentimen Terhadap Kualitas Pelayanan Aplikasi Go-Jek Menggunakan Metode Naive Bayes Classifier. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 10(1).

Larasati, F. A., Ratnawati, D. E., & Hanggara, B. T. (2022). Analisis Sentimen Ulasan Aplikasi Dana dengan Metode Random Forest. Pengembangan Teknologi Informasi Dan Ilmu Komputer, 6(9), 4305–4313. http://j-ptiik.ub.ac.id

Mutmatinah, S., Khairunnas, & Khairunnisa. (2024). Metode Deep Learning LSTM dalam Analisis Sentimen Aplikasi Peduli Lindungi. Scientific (Journal of Computers Sciences and Informatics), 1(1), 10–19. https://doi.org/10.34304/scientific.v1i1.231

Muttaqin, M. N., & Kharisudin, I. (2021). Analisis Sentimen Pada Ulasan Aplikasi Gojek Menggunakan Metode Support Vector Machine dan K Nearest Neighbor. UNNES Journal of Mathematics, 10(2), 22–27. http://journal.unnes.ac.id/sju/index.php/ujm

Pardede, J., & Pakpahan, I. (2023). Analisis Sentimen Penanganan Covid-19 Menggunakan Metode Long Short-Term Memory Pada Media Sosial Twitter. JUPTI (Jurnal Publikasi Teknik Informatika), 2(1), 12–25.

Prawinata, D. A., Rahajoe, A. D., & Diyasa, I. G. S. M. (2024). Analisis Sentimen Kendaraan Listrik Pada Twitter Menggunakan Metode Long Short Term Memory. SABER (Jurnal Teknik Informatika, Sains Dan Ilmu Komunikasi), 2(1), 300–313. https://doi.org/10.59841/saber.v2i1.857

Published
2025-12-05
How to Cite
Firdaussani, A., Oktavianto, H., & Suharso, W. (2025). Sentiment Analysis of Gojek Application User Reviews Using the Long Short-Term Memory (LSTM) Algorithm. Smart Techno (Smart Technology, Informatics and Technopreneurship), 1-12. Retrieved from https://lppm.primakara.ac.id/jurnal/index.php/smart-techno/article/view/167
Section
Articles