SISTEM PENDUKUNG KEPUTUSAN PENERIMAAN DAN PENILAIAN KINERJA PEGAWAI
Abstract
Terdapat banyak masalah dalam proses penerimaan pegawai serta monitoring karyawan, seperti proses rekrutmen yang kompleks dan banyaknya pelamar yang mendaftar. Dari sinilah hadir gagasan untuk menggunakan sistem pendukung keputusan untuk membantu proses rekrutmen dan penilaian kinerja pegawai baru. Menggunakan metode K-NN dan Weithed Product penilaian kinerja dari karyawan menjadi salah satu aspek penting lainnya dalam mengembangkan sebuah perusahaan menjadi lebih efisien dan efektif. Ini dapat mempengaruhi kinerja perusahaan dan retensi karyawannya. Selain itu, Sistem Pendukung Keputusan Penerimaan dan Penilaian Kinerja Pegawai Baru ini dapat memberikan masukan atau opini kedua yang diperlukan untuk memilih calon karyawan terbaik dari pelamar yang ada. Jika penilaian kinerja ini tidak ada, maka kualitas kerja dari karyawan baru tersebut akan menjadi tidak terkontrol.
Downloads
References
[2] Z. Arifin and S. M. Wali Jafar Shudiq, "PENERAPAN METODE KNN (K-NEAREST NEIGHBOR) DALAM," vol. 4, no. 1, p. 2, 2019.
[3] BlogPress, "Mengenal Pengertian Website," BlogPress.id, 14 Juni 2020. [Online]. Available: https://www.blogpress.id/pengertian-website/. [Accessed 28 Oktober 2020].
[4] D. Kurniawan and A. Saputra, "Penerapan K-Nearest Neighbor dalam penerimaan peserta didik dengan sistem zonasi," vol. 2, no. 1, p. 3, 2019.
[5] E. S. S. Jodi Irjaya Kartika, "Penentuan Siswa Berprestasi Menggunakan Metode K-Nearest Neighbor (Studi Kasus : SMP Negeri 3 Mejayan)," vol. 1, no. 5, p. 3, 2017.
[6] CloudHost, "Mengenal Aplikasi Sublime : Cara Download Sublime Gratis dan Cara Kerjanya," CloudHost.id, 15 Maret 2020. [Online]. Available: https://idcloudhost.com/mengenal-aplikasisublime-cara-download-sublime-gratis-dan-carakerjanya/. [Accessed 28 Oktober 2020]. 69 70
[7] Y. R. Amalia, "Penerapan Data Mining untuk prediksi penjualan produk elektronik terlaris menggunakan metode k-nearest neighbor," 2018.
[8] N. L. G. P. Suwirmayanti, "Penerapan Metode KNearest Neighbor Untuk Sistem," vol. 16, no. 2, 2017.
[9] R. D. Sitepu and E. Buulolo, "IMPLEMENTASI ALGORITMA NEAREST NEIGHBOR PADA PENERIMAAN PEGAWAI BARU PADA MTS IKHWANUTS TSALITS TALUN KENAS," vol. 1, no. 1, 2017.
[10] S. S. Sundari and Y. F. Taufik, "Sistem Pendukung Keputusan Penerimaan Pegawai Baru Dengan Menggunakan Metode Simple Additive Weighting(SAW)," vol. 4, no. 2, 2014.
[11] E. Ismanto and N. Effendi, "Sistem Pendukung Keputusan Penerimaan Karyawan Dengan Metode Simple Additive Weighting (SAW," vol. 3, no. 1, 2017.
[12] A. J. T, D. Yanosma and K. Anggriani, "Implementasi Metode K-Nearest Neighbor (Knn) Dan Simple Additive Weighting (Saw) Dalam Pengambilan Keputusan Seleksi Penerimaan Anggota Paskibraka," vol. 3, no. 2, 2016.
[13] M. R. Alghifari and A. P. Wibowo, "Penerapan Metode K-Nearest Neighbor untuk Klasifikasi Kinerja Satpam Berbasis Web," vol. 5, no. 1, 2019. 71
[14] M. I. Ukkas, H. E. Yulsilviana and S. F. Muthia, Sistem Pendukung Keputusan Penilaian Kinerja Karyawan pada PT. Ranugas Utama menngunakan Metode K-Nearest Neighbor, vol. 1, no. 1, 2017.
[15] K. S. Dasa, I. P. Satwika and K. Q. Fredlina, "SISTEM PENDUKUNG KEPUTUSAN PEMBERIAN BEASISWA PPA DI STMIK PRIMAKARA," vol. 6, p. 3, 2020.
[16] I. G. J. E. Putra and A. A. G. A. W. Pemayun, "SISTEM PENDUKUNG KEPUTUSAN PENILAIAN KINERJA DOSEN DENGAN IT BALANCED," vol. 06, no. 1, p. 96, 2020.
[17] Binus University, "Mengenal Metode pembuatan sistem informasi Waterfall," Binus.ac.id, 13 November 2019. [Online]. Available: https://binus.ac.id/bandung/2019/11/mengenalmetode-pembuatan-sistem-informasi-waterfall/. [Accessed 9 November 2020].
[18] Guntoro, "Metode Waterfall : Pengertian, Tahapan, Contoh, Kelebihan dan Kekurangan," Badoy Studio, 13 Juli 2020. [Online]. Available: https://badoystudio.com/metode-waterfall/. [Accessed 9 November 2020].
[19] Hestanto, "Model Air Terjun (Waterfall Model)," [Online]. Available: https://www.hestanto.web.id/model-air-terjunwaterfall-model/. [Accessed 9 November 2020]
Copyright (c) 2023 I Putu Tejakusuma Dharma Yoga, Ketut Quenaa Fredlina, I Gede Juliana Eka Putra
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution International License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Copyright without Restrictions
The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
The submitted papers are assumed to contain no proprietary material unprotected by patent or patent application; responsibility for technical content and for protection of proprietary material rests solely with the author(s) and their organizations and is not the responsibility of the SMART TECHNO or its Editorial Staff. The main (first/corresponding) author is responsible for ensuring that the article has been seen and approved by all the other authors. It is the responsibility of the author to obtain all necessary copyright release permissions for the use of any copyrighted materials in the manuscript prior to the submission.